[footnoteRef:1] [1: ] 

Reordering Test Vectors with Particle Swarm Optimization
Jordan Richardson
Department of Electrical and Computer Engineering, Auburn University, Auburn, USA
Email: jar0012auburn.edu
[bookmark: _GoBack]Abstract—Power consumption during testing of combinational circuits is of concern in industry. For a given set of test vectors, power consumed during testing is related to the number of bits that change between each applied vector (a.k.a. Hamming distance). The amount of power consumed can thus be minimized if the test vectors are reordered in a way that minimizes the total Hamming distance. This manuscript proposes to apply Particle Swarm Optimization (PSO) to reorder test vectors. Experimental results show that test power is reduced by 23% when PSO is used to reorder vectors.

[bookmark: PointTmp]Index Terms—particle swarm optimization, PSO, traveling salesperson problem, TSP, low power, testing
INTRODUCTION
Testing combinational circuits requires the sequential application of test vectors. Deriving a set of test vectors that cover all possible faults, and is small enough to be practical is a nontrivial task[1]. Once a suitable set of test vectors has been generated, the goal changes to minimizing the power consumed during testing. For combinational CMOS circuits, the power is consumed when changes in the input propagate through the circuit. If the input is static, then obviously no changes occur. This leads to the assumption that amount of power consumed when applying input vectors is proportional to the number of bits that are different between the vectors, otherwise known as the Hamming distance. Therefore, for a given set of test vectors, the power consumption will be minimized if the vectors are ordered such that the total Hamming distance is minimized.
This problem of test vector reordering is equivalent to the classis Traveling Salesperson Problem (TSP). Many different techniques have been applied to the TSP over its long history, so for the sake of brevity, this paper will focus on applying an optimization technique to reordering vectors, and evaluate the results.
The optimization algorithm that will be examined is a modified version of Particle Swarm Optimization (PSO). The algorithm will be implemented in the MATLAB programming environment, and the results evaluated using HSPICE to simulate power consumption in an ISCAS-85 C6288 16x16 bit multiplier (Fig. 1.).
[image: ]
Fig.1. ISCAS-85 C6288 Multiplier. 
Image Credit: http://web.eecs.umich.edu/~jhayes/iscas.restore/c6288.html

The rest of this paper is organized as follows: Section II details PSO and the modifications to make it applicable to the TSP problem, Section III experimental results, and finally conclusions are drawn in Section IV.
Brief Algorithm review
The goal of this paper was to implement and evaluate the suitability of Particle Swarm Optimization (PSO) to solve the Traveling Salesperson Problem (TSP). This section provides a review of the PSO algorithm, and the modifications implemented to make it applicable to the TSP.
Original PSO
Particle Swarm Optimization[2] can be classified as a biologically inspired algorithm. Biologically inspired algorithms, such as PSO, Genetic Algorithms (GA), Ant Colony Optimization[3] (ACO), etc. This class of algorithm attempts to approximate some aspect of biological life in order to solve computational problems.
In particular, PSO can be thought of as an approximation of the way a flock of birds locate and congregate to the most abundant food sources. The birds do not know where the best food source is, but they can see where other birds are gathering, and adjust their flight paths to investigate. PSO is a simplified version of this type of behavior. Instead of birds, the problem space is filled with particles, which are attempting to minimize an objective function. The algorithm itself is very simple. The problem space is seeded with a user set number of particles. Each particle is given a random starting position and velocity. On each iteration of the algorithm, the fitness of every particle is evaluated, and the position of the best particle is recorded. Then, the velocity and position of each particle is updated according to  and  respectively.

	
	
	[bookmark: ZEqnNum850088]

	
	
	[bookmark: ZEqnNum204105]



 Where  is the velocity of particle  on iteration ,  and  are learning constants,  and  are random numbers between zero and one,  is the best position ever obtained by particle , and  is the best position ever obtained by any member of the population.
In practice, there are a few more settings/modifications, such a maximum allowed velocity used to limit the rate at which particle can move through the problem space, or an inertia factor that causes particle to resist changing their current velocity; but the above description covers the major portions of the algorithm.
Discrete PSO
The original PSO algorithm works well for optimization problems where the solutions can be real numbers. For a path to be a valid solution to the TSP, it must only contain node values between one and the total number of nodes. In addition, the solution cannot have any repeats. These restrictions necessitate modifications to the PSO algorithm. There has been extensive research on modifying PSO for discrete problems, and for TSP. For a fairly recent literature review, see [4].
The modifications described below are modeled on those presented in [5], which should be read for a complete derivation. In brief, the modifications define a new swap operator, and redefines  and  operators.
For a sequence  made up of  nodes, the swap operator (SO) is defined as:

	
	
	



Where the new sequence  is equal to the old sequence , with the node  swapped with the node . Furthermore, we can define a swap sequence  as a series of one or more swap operators performed sequentially. The  operator is defined as the swap sequence necessary to transform one sequence into another.

	
	
	

	
	
	



With these new definitions, the position and velocity update rules in  and  are modified as
	
	
	[bookmark: ZEqnNum478183]

	
	
	[bookmark: ZEqnNum980764]



Where  and  are now random numbers between zero and one, and control the probability of the all swap operators in the swap sequence being maintained or removed. With the new update rules in  and , the PSO algorithm can now be implemented.
Experimental Results
Experimental setup
The ISCAS-85 C6288 16x16 multiplier was chosen as the benchmark circuit for simulation. The initial set of 10 test vectors can be seen on Table I. These vectors were generated in [1].
 TABLE I INITIAL TEST VECTOR ORDER
	Vector #
	32 bit input vectors

	1
	11011011011011011101111111111111

	2
	01101101101101101111111111111111

	3
	00000000000000000010111111111111

	4
	10110110110110111101111111111111

	5
	11111111111111111101010101010101

	6
	11111111111111110110101010101010

	7
	00111111111111011101010101010101

	8
	00111111111111011010101010101011

	9
	11101101101101100010111111111111

	10
	11011011011011001010101010101010



The experimental setup consisted of two parts. First, MATLAB code was written to perform PSO on the test vectors. Ten trials were performed. Each trial started with 100 random initial particles, and was allowed to operate for 50 iterations. After 50 iterations, the best solution was saved, and the next trial started. The result was a set of 10 different orders for the test vectors. For comparison, a set 10 random orders were also generated. The second part of the simulation utilized HSPICE to simulate a netlist of the c6288 circuit for all of the test vector orders, using 45nm PTM metal gate/high-k CMOS technology. The MATLAB code can be found in Appendix I, and the Verilog file used to generate the HSPICE netlist, sample input file, and PTM files can be found in Appendix II.
Results
The first set of results was produced in MATLAB. Table II shows the total Hamming distance for the original order, the 10 random orders, and the 10 PSO orders. For the orderings used, and a sample wave form, see Appendix III.

TABLE II HAMMING DISTANCES
	
	Trial
	Original
	Random
	PSO

	Distance
	1
	128
	118
	79

	
	2
	-
	126
	83

	
	3
	-
	108
	82

	
	4
	-
	122
	81

	
	5
	-
	141
	79

	
	6
	-
	142
	77

	
	7
	-
	128
	79

	
	8
	-
	122
	85

	
	9
	-
	117
	77

	
	10
	-
	118
	83



It can be seen from Table I that all of the PSO produced orderings resulted in a smaller Hamming distance than the original, or the random orders.
The next step was to simulate the different test vector orderings with HSPICE. Table III shows the numerical results, while Fig. 3 is a graphical representation of the same data.

TABLE III AVERAGE POWER
	
	Trial
	Original
	Random
	PSO

	Average Power (mW)
	1
	6.7780
	5.5994
	5.2648

	
	2
	-
	6.4710
	5.6193

	
	3
	-
	5.8394
	5.0161

	
	4
	-
	7.0186
	5.2858

	
	5
	-
	6.4496
	5.0907

	
	6
	-
	6.5014
	5.1154

	
	7
	-
	5.7309
	5.4610

	
	8
	-
	5.9993
	5.0148

	
	9
	-
	6.3564
	5.1154

	
	10
	-
	5.6098
	5.1429



[image: ]Fig.2. Comparing path length with average power consumption

	It can be easily seen in Fig. 2 that the PSO vector orders produce lower power consumption than the random vectors, and improve on the original order. Table IV shows the percent reduction in power consumption for the random and PSO ordering when compared to the original.

TABLE IV PERCENT REDUCTION IN POWER
	
	Trial
	Random
	PSO

	Percent Improvement (%)
	1
	17.39
	22.33

	
	2
	4.53
	17.10

	
	3
	13.85
	25.99

	
	4
	-3.55
	22.02

	
	5
	4.85
	24.89

	
	6
	4.08
	24.53

	
	7
	15.45
	19.43

	
	8
	11.49
	26.01

	
	9
	6.22
	24.53

	
	10
	17.23
	24.12



	The PSO orderings reduce power consumption by an average of 23%, and the random orderings reduce power by an average of 9%.
 Conclusions and Future Work
Power consumed during testing of combinational circuits can be significant. The power consumed can be reduced by proper reordering of vectors to minimize Hamming distance. In this paper we have shown how to use Particle Swarm Optimization to reorder test vectors. Experimental results show a significant reduction in power consumption as a result.
There are still many areas that need more investigation. The PSO algorithm needs further testing and improvement. It would be interesting to examine the effect of increasing the number of particles to increasing the maximum number of iterations, and see which has the greater impact on the quality of the solution. Larger sample sizes, as well as different benchmark circuits/initial vector sets would provide useful insight into the scalability of the proposed approach.
Acknowledgement
I would like to thank Dr. Agrawal for his teaching and allowing me to work on this project. I would also like to thank Murali Dharan for his invaluable assistance with the simulations tools.

References
[1]	K. R. Kantipudi and V. D. Agrawal, “A Reduced Complexity Algorithm for Minimizing N-Detect Tests,” in , 20th International Conference on VLSI Design, 2007. Held jointly with 6th International Conference on Embedded Systems, 2007, pp. 492–497.
[2]	J. Kennedy and R. Eberhart, “Particle swarm optimization,” in , IEEE International Conference on Neural Networks, 1995. Proceedings, 1995, vol. 4, pp. 1942–1948 vol.4.
[3]	M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA, USA: Bradford Company, 2004.
[4]	W.-N. Chen, J. Zhang, H. S. H. Chung, W.-L. Zhong, W. Wu, and Y. Shi, “A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems,” IEEE Trans. Evol. Comput., vol. 14, no. 2, pp. 278–300, Apr. 2010.
[5]	K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, “Particle swarm optimization for traveling salesman problem,” in 2003 International Conference on Machine Learning and Cybernetics, 2003, vol. 3, pp. 1583–1585 Vol.3.



1


1

Appendix I
	
	clear all;
 
V1=[1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1];
V2=[0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];
V3=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1];
V4=[1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1];
V5=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1];
V6=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0];
V7=[0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1];
V8=[0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1];
V9=[1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1];
V10=[1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0];
V=[V1;V2;V3;V4;V5;V6;V7;V8;V9;V10];
 
% V=randi(2,50,32)-1;
nvec=size(V,1);
distanceMat=zeros(nvec,nvec);
 
for i=1:nvec
    for j=1:nvec
        distanceMat(i,j)=sum(abs(V(i,:)-V(j,:)));
    end
end
% s=48315965;% control random seed for repeatability, comment out for random vectors
% rng(s);
ntrial=10;
 
nparticles=100;
max_iter=50;
VMAX=1;
inertia=1;c1=0.5; c2=0.5;
bestDists=zeros(ntrial,1);
bestPaths=zeros(ntrial,nvec);
numberOfIterationsToBest=zeros(ntrial,1);
reorderedVecs=cell(1,ntrial);
tic
for k=1:ntrial
 
% distances=zeros(nparticles,1);
% velocities=zeros(nparticles,nvec);
particles=cell(nparticles,1);
%% initialize particles
 
globalBestDistance=inf;
globalBestPath=nan*ones(1,nvec);
for i=1:nparticles
%     particle.presentPath=randperm(nvec);
    particle.presentPath=randperm(nvec+2,nvec)-1;
    particle.presentPath=fixParticle(particle.presentPath);
    particle.velocity=[];
    particle.distance=evaluatePath(distanceMat,particle.presentPath);
    particle.personalBestPath=particle.presentPath;
    particle.personalBestDistance=particle.distance;
    if (particle.distance<globalBestDistance)
        globalBestDistance=particle.distance;
        globalBestPath=particle.presentPath;
    end
    particles{i}=particle;
end
 
 
% bestPath=zeros(1,nvec);
for i=1:max_iter
    inertia=0.9-(0.9-0.4)*i/max_iter;
    for j=1:nparticles
%         [particles{j}.presentPath,particles{j}.velocity]=updateParticle(particles{j}.presentPath,particles{j}.velocity,globalBestPath,particles{j}.personalBestPath,c1,c2);
        particles{j}.distance=evaluatePath(distanceMat,particles{j}.presentPath);
        if (particles{j}.distance<particles{j}.personalBestDistance)
            particles{j}.personalBestDistance=particles{j}.distance;
            particles{j}.personalBestPath=particles{j}.presentPath;
        end
 
        
        if (particles{j}.distance<globalBestDistance)
            globalBestDistance=particles{j}.distance;
            globalBestPath=particles{j}.presentPath;
            numberOfIterationsToBest(k)=i;
        end
    end
    for j=1:nparticles
%         [particles{j}.presentPath,particles{j}.velocity]=updateParticle(particles{j}.presentPath,particles{j}.velocity,globalBestPath,particles{j}.personalBestPath,inertia,c1,c2,VMAX);
[particles{j}.presentPath,particles{j}.velocity]=updateParticleDiscrete(particles{j}.presentPath,particles{j}.velocity,globalBestPath,particles{j}.personalBestPath,inertia,c1,c2,VMAX);
        particles{j}.presentPath=fixParticle(particles{j}.presentPath);
    end
    if (globalBestDistance<=77)
        break
    end
%     inertia=
end
bestDists(k)=globalBestDistance;
bestPaths(k,:)=globalBestPath;
reorderedVecs{k}=V(globalBestPath,:);
end
time=toc
bestDist=min(bestDists)
% ind=find(
bestIter=numberOfIterationsToBest(bestDists==bestDist)
averageDist=sum(bestDists)/length(bestDists)
averageIter=sum(numberOfIterationsToBest)/length(numberOfIterationsToBest)
 
% ntrial=50;
% 
% nparticles=5000;
% max_iter=10;
fname=strcat('nt',num2str(ntrial),'np',num2str(nparticles),'niter',num2str(max_iter));
% save fname
save(fname)


	
	function [particle,velocity]=updateParticleDiscrete(particle,velocity,gbest,pbest,inertia,c1,c2,VMAX)
s1=createSwapSequence(pbest,particle);
for i=1:size(s1,1)
if (rand(1) <=c1)
    s1(i,:)=[0,0];
end
end
s2=createSwapSequence(gbest,particle);
for i=1:size(s2,1)
    if (rand(1) <=c2)
        s2(i,:)=[0,0];
    end
end
% if (rand(1) <=c2)
%     s2=[];
% end
for i=1:size(velocity,1)
    if (rand(1) <=inertia)
        velocity(i,:)=[0,0];
    end
end
% if (rand(1) >=inertia)
%     velocity=[velocity;s1;s2];
% end
% velocity=[velocity;c1*rand(1)*(createSwapSequence(pbest,particle));c2*rand(1)*(createSwapSequence(gbest,particle));
 
% velocity(velocity > VMAX)=VMAX;
% particle=particle+round(velocity);
if (rand(1)>inertia)
    velocity=[s1;s2];
end
particle=swapSequence(particle,velocity);


	
	function swapOrder=createSwapSequence(sequence1,sequence2)
% clear all;
% % s=12341;rng(s);
% % sequence1=1:1:5
% % sequence2=randperm(5)
% sequence1=[1,2,3,4,5];
% sequence2=[2,3,1,5,4];
l1=length(sequence1);l2=length(sequence2);
swapOrder=zeros(l1,2);
cnt=0;
for i=1:l1
    for j=1:l2
        if (sequence1(i)==sequence2(j) && i~=j)
            cnt=cnt+1;
            swapOrder(cnt,:)=[i,j];
            
            sequence2=swapOperator(sequence2,i,j);
        end
    end
%     if (sequence1==sequence2)
%         break
%     end
end
swapOrder=swapOrder(1:cnt,:);
 
% [C,ia,ib]=union(sequence1,sequence2);
 
% test=swapSequence(sequence1,swapOrder)


	
	function    sequence=swapSequence(sequence,SO)
for i=1:size(SO,1)
    sequence=swapOperator(sequence,SO(i,1),SO(i,2));
end


	
	function sequence=swapOperator(sequence,i1,i2)
if (i1~=0 && i2 ~=0)
sequence([i1,i2])=sequence([i2,i1]);
end



Appendix II
	45nm_MGK.pm
	* PTM 45nm Metal Gate / High-K  

.model n nmos  level=54 

+version = 4.0             binunit = 1               paramchk= 1               mobmod  = 0             
+capmod  = 2               igcmod  = 1               igbmod  = 1               geomod  = 1             
+diomod  = 1               rdsmod  = 0               rbodymod= 1               rgatemod= 1             
+permod  = 1               acnqsmod= 0               trnqsmod= 0             

+tnom    = 27              toxe    = 9e-010          toxp    = 6.5e-010        toxm    = 9e-010        
+dtox    = 2.5e-010        epsrox  = 3.9             wint    = 5e-009          lint    = 2.7e-009      
+ll      = 0               wl      = 0               lln     = 1               wln     = 1             
+lw      = 0               ww      = 0               lwn     = 1               wwn     = 1             
+lwl     = 0               wwl     = 0               xpart   = 0               toxref  = 9e-010           xl      = -20e-9
+dlcig   = 2.7e-009      

+vth0    = 0.3423          k1      = 0.2             k2      = 0               k3      = 0             
+k3b     = 0               w0      = 2.5e-006        dvt0    = 1               dvt1    = 2             
+dvt2    = 0               dvt0w   = 0               dvt1w   = 0               dvt2w   = 0             
+dsub    = 0.078           minv    = 0.05            voffl   = 0               dvtp0   = 1e-010        
+dvtp1   = 0.1             lpe0    = 0               lpeb    = 0               xj      = 1.4e-008      
+ngate   = 1e+023          ndep    = 6.5e+018        nsd     = 2e+020          phin    = 0             
+cdsc    = 0               cdscb   = 0               cdscd   = 0               cit     = 0             
+voff    = -0.13           nfactor = 1.9             eta0    = 0.0055          etab    = 0             
+vfb     = -1.058          u0      = 0.02947         ua      = -5e-010         ub      = 1.7e-018      
+uc      = 0               vsat    = 159550          a0      = 1               ags     = 0             
+a1      = 0               a2      = 1               b0      = 0               b1      = 0             
+keta    = 0.04            dwg     = 0               dwb     = 0               pclm    = 0.06          
+pdiblc1 = 0.001           pdiblc2 = 0.001           pdiblcb = -0.005          drout   = 0.5           
+pvag    = 1e-020          delta   = 0.01            pscbe1  = 2.0e+009        pscbe2  = 1e-007        
+fprout  = 0.2             pdits   = 0.01            pditsd  = 0.23            pditsl  = 2300000       
+rsh     = 5               rdsw    = 105             rsw     = 52.5            rdw     = 52.5            
+rdswmin = 0               rdwmin  = 0               rswmin  = 0               prwg    = 0             
+prwb    = 0               wr      = 1               alpha0  = 0.074           alpha1  = 0.005         
+beta0   = 30              agidl   = 0.0002          bgidl   = 2.1e+009        cgidl   = 0.0002        
+egidl   = 0.8             aigbacc = 0.012           bigbacc = 0.0028          cigbacc = 0.002         
+nigbacc = 1               aigbinv = 0.014           bigbinv = 0.004           cigbinv = 0.004         
+eigbinv = 1.1             nigbinv = 3               aigc    = 0.018029        bigc    = 0.0029        
+cigc    = 0.002           aigsd   = 0.018029        bigsd   = 0.0029          cigsd   = 0.002         
+nigc    = 1               poxedge = 1               pigcd   = 1               ntox    = 1             
+xrcrg1  = 12              xrcrg2  = 5             

+cgso    = 1e-010          cgdo    = 1e-010          cgbo    = 0               cgdl    = 7.5e-013      
+cgsl    = 7.5e-013        clc     = 1e-007          cle     = 0.6             cf      = 1.1e-010      
+ckappas = 0.6             ckappad = 0.6             vfbcv   = -1              acde    = 1             
+moin    = 15              noff    = 1               voffcv  = 0             

+kt1     = -0.154          kt1l    = 0               kt2     = 0.022           ute     = -1.1          
+ua1     = 1e-009          ub1     = -1e-018         uc1     = -5.6e-011       prt     = 0             
+at      = 33000         

+fnoimod = 1               tnoimod = 0               noia    = 6.25e+041       noib    = 3.125e+026    
+noic    = 8.75e+009       em      = 41000000        af      = 1               ef      = 1             
+kf      = 0               tnoia   = 1.5             tnoib   = 3.5             ntnoi   = 1             

+jss     = 1.2e-006        jsws    = 2.4e-013        jswgs   = 2.4e-013        njs     = 1             
+ijthsfwd= 0.1             ijthsrev= 0.1             bvs     = 10              xjbvs   = 1             
+jsd     = 1.2e-006        jswd    = 2.4e-013        jswgd   = 2.4e-013        xjbvd   = 1             
+pbs     = 1               cjs     = 0.0018          mjs     = 0.5             pbsws   = 1             
+cjsws   = 1.2e-010        mjsws   = 0.33            cjswgs  = 2.1e-010        cjd     = 0.0018        
+cjswd   = 1.2e-010        mjswd   = 0.33            pbswgd  = 1               cjswgd  = 2.1e-010      
+mjswgd  = 0.33            tpb     = 0               tcj     = 0               tpbsw   = 0             
+tcjsw   = 0               tpbswg  = 0               tcjswg  = 0               xtis    = 3             

+dmcg    = 0               dmci    = 0               dmdg    = 0               dmcgt   = 0             
+dwj     = 0               xgw     = 0               xgl     = 0             

+rshg    = 0.4             gbmin   = 1e-010          rbpb    = 5               rbpd    = 15            
+rbps    = 15              rbdb    = 15              rbsb    = 15              ngcon   = 1    

.model  p pmos level = 54 

+version = 4.0             binunit = 1               paramchk= 1               mobmod  = 0
+capmod  = 2               igcmod  = 1               igbmod  = 1               geomod  = 1
+diomod  = 1               rdsmod  = 0               rbodymod= 1               rgatemod= 1
+permod  = 1               acnqsmod= 0               trnqsmod= 0

+tnom    = 27              toxe    = 9.2e-010        toxp    = 6.5e-010        toxm    = 9.2e-010
+dtox    = 2.7e-010        epsrox  = 3.9             wint    = 5e-009          lint    = 2.7e-009
+ll      = 0               wl      = 0               lln     = 1               wln     = 1
+lw      = 0               ww      = 0               lwn     = 1               wwn     = 1
+lwl     = 0               wwl     = 0               xpart   = 0               toxref  = 9.2e-010         xl      = -20e-9
+dlcig   = 2.7e-009

+vth0    = -0.23122        k1      = 0.2             k2      = -0.01           k3      = 0
+k3b     = 0               w0      = 2.5e-006        dvt0    = 1               dvt1    = 2
+dvt2    = -0.032          dvt0w   = 0               dvt1w   = 0               dvt2w   = 0
+dsub    = 0.1             minv    = 0.05            voffl   = 0               dvtp0   = 1e-011
+dvtp1   = 0.05            lpe0    = 0               lpeb    = 0               xj      = 1.4e-008
+ngate   = 1e+023          ndep    = 2.8e+018        nsd     = 2e+020          phin    = 0
+cdsc    = 0               cdscb   = 0               cdscd   = 0               cit     = 0
+voff    = -0.13           nfactor = 1.9             eta0    = 0.0049          etab    = 0
+vfb     = -1.058          u0      = 0.00391         ua      = -5e-010         ub      = 1.6e-018
+uc      = 0               vsat    = 78000           a0      = 1               ags     = 1e-020
+a1      = 0               a2      = 1               b0      = 0               b1      = 0
+keta    = -0.047          dwg     = 0               dwb     = 0               pclm    = 0.1
+pdiblc1 = 0.001           pdiblc2 = 0.001           pdiblcb = 3.4e-008        drout   = 0.6
+pvag    = 1e-020          delta   = 0.01            pscbe1  = 2e+009          pscbe2  = 9.58e-007
+fprout  = 0.2             pdits   = 0.08            pditsd  = 0.23            pditsl  = 2300000
+rsh     = 5               rdsw    = 105             rsw     = 52.5            rdw     = 52.5
+rdswmin = 0               rdwmin  = 0               rswmin  = 0               prwg    = 0
+prwb    = 0               wr      = 1               alpha0  = 0.074           alpha1  = 0.005
+beta0   = 30              agidl   = 0.0002          bgidl   = 2.1e+009        cgidl   = 0.0002
+egidl   = 0.8             aigbacc = 0.012           bigbacc = 0.0028          cigbacc = 0.002
+nigbacc = 1               aigbinv = 0.014           bigbinv = 0.004           cigbinv = 0.004
+eigbinv = 1.1             nigbinv = 3               aigc    = 0.010687        bigc    = 0.0012607
+cigc    = 0.0008          aigsd   = 0.010687        bigsd   = 0.0012607       cigsd   = 0.0008
+nigc    = 1               poxedge = 1               pigcd   = 1               ntox    = 1
+xrcrg1  = 12              xrcrg2  = 5

+cgso    = 1e-010          cgdo    = 1e-010          cgbo    = 0               cgdl    = 3e-011
+cgsl    = 3e-011          clc     = 1e-007          cle     = 0.6             cf      = 1.1e-010
+ckappas = 0.6             ckappad = 0.6             vfbcv   = -1              acde    = 1
+moin    = 15              noff    = 1               voffcv  = 0

+kt1     = -0.14           kt1l    = 0               kt2     = 0.022           ute     = -1.1
+ua1     = 1e-009          ub1     = -1e-018         uc1     = -5.6e-011       prt     = 0
+at      = 33000

+fnoimod = 1               tnoimod = 0               noia    = 6.25e+041       noib    = 3.125e+026
+noic    = 8.75e+009       em      = 41000000        af      = 1               ef      = 1
+kf      = 0               tnoia   = 1.5             tnoib   = 3.5             ntnoi   = 1

+jss     = 2e-007          jsws    = 4e-013          jswgs   = 4e-013          njs     = 1
+ijthsfwd= 0.1             ijthsrev= 0.1             bvs     = 10              xjbvs   = 1
+jsd     = 2e-007          jswd    = 4e-013          jswgd   = 4e-013          xjbvd   = 1
+pbs     = 1               cjs     = 0.0015          mjs     = 0.5             pbsws   = 1
+cjsws   = 9.4e-011        mjsws   = 0.33            cjswgs  = 2e-010          cjd     = 0.0015
+cjswd   = 9.4e-011        mjswd   = 0.33            pbswgd  = 1               cjswgd  = 2e-010
+mjswgd  = 0.33            tpb     = 0               tcj     = 0               tpbsw   = 0
+tcjsw   = 0               tpbswg  = 0               tcjswg  = 0               xtis    = 3

+dmcg    = 0               dmdg    = 0               dmcgt   = 0               xgw     = 0
+xgl     = 0

+rshg    = 0.1             gbmin   = 1e-012          rbpb    = 50              rbpd    = 50
+rbps    = 50              rbdb    = 50              rbsb    = 50              ngcon   = 1
         

	test.vec
	; start of Pattern Definition section
RADIX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vname A[15] A[14] A[13] A[12] A[11] A[10] A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] B[15] B[14] B[13] B[12] B[11] B[10] B[9] B[8] B[7] B[6] B[5] B[4] B[3] B[2] B[1] B[0] 
IO I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
period 0.5
tunit ns
slope 0.01
vih 1
vil 0
voh 0.7
vol 0.3

;Vector Table
1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	1
1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1	0	1	1	0	1	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

	c6288b.v
	/****************************************************************************
 *                                                                          *
 *  VERILOG BEHAVIORAL DESCRIPTION OF THE ISCAS-85 BENCHMARK CIRCUIT c6288  *
 *                                                                          *
 *  Function: 16 x 16 Multiplier                                            *
 *                                                                          *
 *  Written by: Mark C. Hansen                                              *
 *                                                                          *
 *  Last modified: Nov 12, 1997                                             *
 *                                                                          *
 ****************************************************************************/

module Circuit6288h (in256, in239, in222, in205, in188, in171, in154, in137, 
                 in120, in103, in86, in69, in52, in35, in18, in1,
                 in528, in511, in494, in477, in460, in443, in426, in409,
                 in392, in375, in358, in341, in324, in307, in290, in273,
                 out6287, out6288, out6280, out6270,
                 out6260, out6250, out6240, out6230, 
                 out6220, out6210, out6200, out6190, 
                 out6180, out6170, out6160, out6150, 
                 out6123, out5971, out5672, out5308, 
                 out4946, out4591, out4241, out3895,
                 out3552, out3211, out2877, out2548,
                 out2223, out1901, out1581, out545);

  input          in256, in239, in222, in205, in188, in171, in154, in137, 
                 in120, in103, in86, in69, in52, in35, in18, in1,
                 in528, in511, in494, in477, in460, in443, in426, in409,
                 in392, in375, in358, in341, in324, in307, in290, in273;
  output         out6287, out6288, out6280, out6270,
                 out6260, out6250, out6240, out6230, 
                 out6220, out6210, out6200, out6190, 
                 out6180, out6170, out6160, out6150, 
                 out6123, out5971, out5672, out5308, 
                 out4946, out4591, out4241, out3895,
                 out3552, out3211, out2877, out2548,
                 out2223, out1901, out1581, out545;

  wire [15:0]   A, B;
  wire [31:0]   P;

  assign
      A[15:0] = {in256, in239, in222, in205, in188, in171, in154, in137, 
                 in120, in103, in86, in69, in52, in35, in18, in1},
      B[15:0] = {in528, in511, in494, in477, in460, in443, in426, in409,
                 in392, in375, in358, in341, in324, in307, in290, in273},
      {out6287, out6288, out6280, out6270,
       out6260, out6250, out6240, out6230, 
       out6220, out6210, out6200, out6190, 
       out6180, out6170, out6160, out6150, 
       out6123, out5971, out5672, out5308, 
       out4946, out4591, out4241, out3895,
       out3552, out3211, out2877, out2548,
       out2223, out1901, out1581, out545} = P[31:0];
	
  TopLevel6288b Ckt6288b (A, B, P);

endmodule /* Circuit6288b */

/*************************************************************************/

module TopLevel6288b (A, B, P);

  input[15:0]	A, B;
  output[31:0]	P;

  assign P = A*B;

endmodule /* TopLevel6288b */

/*************************************************************************/ 





Appendix III
	Trial
	PSO order
	random Order

	1
	7->5->1->10->8->6->4->2->9->3
	4->1->2->9->5->6->10->3->7->8

	2
	8->10->6->5->7->4->1->2->9->3
	1->8->4->10->2->3->9->7->5->6

	3
	4->3->9->2->8->6->10->1->5->7
	9->4->7->5->1->10->6->3->2->8

	4
	10->8->6->5->7->4->1->2->9->3
	2->3->10->1->4->9->6->5->8->7

	5
	3->9->2->4->6->8->10->1->5->7
	5->8->6->3->4->1->2->10->7->9

	6
	8->6->10->1->5->7->4->2->9->3
	8->2->1->10->5->3->4->6->9->7

	7
	7->5->6->8->10->1->4->2->9->3
	9->10->3->5->4->1->8->6->2->7

	8
	10->1->7->5->4->6->8->2->9->3
	6->10->9->4->3->8->2->5->1->7

	9
	8->6->10->1->5->7->4->2->9->3
	5->6->3->4->1->7->8->10->9->2

	10
	3->2->9->6->10->8->7->5->4->1
	1->2->3->7->4->5->8->6->10->9


[image: ]
image2.emf
708090100110120130140150

4.5

5

5.5

6

6.5

7

7.5

Path Length

Power (mW)

Power vs Path length

 

 

Original Vector Order

Random Vector Orders

PSO Vector Orders


image3.png
rower

700m

5.0 —|

00w |

5.0 —|

s00m |

asom—|

00w

35.0—|

300

25,0

200w

15,0

10w

som-

oom

sam

CE

a; BT

#/P-Orginal
#A-Original
#B-Original

1l Power-Original
1 Power-Reordered

#A-Reordered
#B-Reordered
#P-Reordered




image1.png
ISCAS-85 C6288 16x16 Multiplier

@ Half Adder
o Full Adder





